.Guarantee being compatible with various frameworks, including.NET 6.0,. NET Framework 4.6.2, and.NET Requirement 2.0 and above.Decrease dependences to prevent variation disputes and also the requirement for binding redirects.Recording Audio Files.One of the primary capabilities of the SDK is actually audio transcription. Creators can translate audio documents asynchronously or in real-time. Below is actually an instance of how to record an audio report:.making use of AssemblyAI.making use of AssemblyAI.Transcripts.var customer = brand-new AssemblyAIClient(" YOUR_API_KEY").var records = await client.Transcripts.TranscribeAsync( new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3". ).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).For regional documents, identical code may be used to achieve transcription.await using var flow = brand-new FileStream("./ nbc.mp3", FileMode.Open).var transcript = wait for client.Transcripts.TranscribeAsync(.stream,.brand new TranscriptOptionalParams.LanguageCode = TranscriptLanguageCode.EnUs.).transcript.EnsureStatusCompleted().Console.WriteLine( transcript.Text).Real-Time Audio Transcription.The SDK additionally holds real-time audio transcription utilizing Streaming Speech-to-Text. This component is specifically practical for requests calling for instant handling of audio data.utilizing AssemblyAI.Realtime.await utilizing var scribe = new RealtimeTranscriber( brand-new RealtimeTranscriberOptions.ApiKey="YOUR_API_KEY",.SampleRate = 16_000. ).transcriber.PartialTranscriptReceived.Subscribe( records =>Console.WriteLine($" Partial: transcript.Text "). ).transcriber.FinalTranscriptReceived.Subscribe( transcript =>Console.WriteLine($" Final: transcript.Text "). ).await transcriber.ConnectAsync().// Pseudocode for receiving sound from a microphone as an example.GetAudio( async (part) => await transcriber.SendAudioAsync( piece)).wait for transcriber.CloseAsync().Taking Advantage Of LeMUR for LLM Apps.The SDK combines along with LeMUR to enable programmers to create big foreign language design (LLM) apps on voice records. Here is actually an instance:.var lemurTaskParams = new LemurTaskParams.Urge="Offer a short review of the records.",.TranscriptIds = [transcript.Id],.FinalModel = LemurModel.AnthropicClaude3 _ 5_Sonnet..var feedback = wait for client.Lemur.TaskAsync( lemurTaskParams).Console.WriteLine( response.Response).Sound Cleverness Versions.In addition, the SDK possesses built-in support for audio cleverness styles, enabling view analysis and other advanced attributes.var records = await client.Transcripts.TranscribeAsync( brand-new TranscriptParams.AudioUrl="https://storage.googleapis.com/aai-docs-samples/nbc.mp3",.SentimentAnalysis = correct. ).foreach (var result in transcript.SentimentAnalysisResults!).Console.WriteLine( result.Text).Console.WriteLine( result.Sentiment)// BENEFICIAL, NEUTRAL, or even NEGATIVE.Console.WriteLine( result.Confidence).Console.WriteLine($" Timestamp: result.Start - result.End ").To find out more, explore the main AssemblyAI blog.Image resource: Shutterstock.